On domination numbers of Cartesian product of paths

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Domination Numbers of Cartesian Product of Paths

We show the link between the existence of perfect Lee codes and minimum dominating sets of Cartesian products of paths and cycles. From the existence of such a code we deduce the asymptotical values of the domination numbers of these graphs.

متن کامل

The domination number of Cartesian product of two directed paths

4 Let γ(Pm2Pn) be the domination number of the Cartesian product of directed paths Pm and Pn for m,n ≥ 2. In [13] Liu and al. determined the value of γ(Pm2Pn) 6 for arbitrary n and m ≤ 6. In this work we give the exact value of γ(Pm2Pn) for any m,n and exhibit minimum dominating sets. 8 AMS Classification[2010]:05C69,05C38. 10

متن کامل

On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles

‎Let G be a graph‎. ‎A 2-rainbow dominating function (or‎ 2-RDF) of G is a function f from V(G)‎ ‎to the set of all subsets of the set {1,2}‎ ‎such that for a vertex v ∈ V (G) with f(v) = ∅, ‎the‎‎condition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled‎, wher NG(v)  is the open neighborhood‎‎of v‎. ‎The weight of 2-RDF f of G is the value‎‎$omega (f):=sum _{vin V(G)}|f(v)|$‎. ‎The 2-rainbow‎‎d...

متن کامل

Note on Split Domination Number of the Cartesian Product of Paths

In this note the split domination number of the Cartesian product of two paths is considered. Our results are related to [2] where the domination number of Pm¤Pn was studied. The split domination number of P2¤Pn is calculated, and we give good estimates for the split domination number of Pm¤Pn expressed in terms of its domination number.

متن کامل

Integer domination of Cartesian product graphs

Given a graph G, a dominating set D is a set of vertices such that any vertex not in D has at least one neighbor in D. A {k}-dominating multiset Dk is a multiset of vertices such that any vertex in G has at least k vertices from its closed neighborhood in Dk when counted with multiplicity. In this paper, we utilize the approach developed by Clark and Suen (2000) to prove a ‘‘Vizing-like’’ inequ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1997

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(97)00091-7